
 

 

 

 

Plutext Pty Ltd 

Docx4j Enterprise 
V11.4.0.3 User Manual 

 



1 
 

Contents 

Overview ............................................................................................................................................. 4 

Version 11.4 ........................................................................................................................................ 5 

Distributions ........................................................................................................................................ 5 

Installation .......................................................................................................................................... 5 

MergeDocx .............................................................................................................................................. 7 

INTRODUCTION ................................................................................................................................... 7 

BASIC USAGE ....................................................................................................................................... 7 

Concatenating several entire docx ................................................................................................. 7 

Concatenating parts of several docx ............................................................................................... 7 

Inserting in a table cell .................................................................................................................. 10 

Resolving altChunk ........................................................................................................................ 12 

Deleting part of a docx .................................................................................................................. 13 

OpenDoPE ..................................................................................................................................... 13 

MANY DOCUMENTS .......................................................................................................................... 15 

SETTINGS ........................................................................................................................................... 15 

Styles ............................................................................................................................................. 15 

Page breaks ................................................................................................................................... 16 

Controlling Headers and Footers .................................................................................................. 17 

Page Numbering ............................................................................................................................ 18 

Macros .......................................................................................................................................... 18 

Interaction between ODD_PAGE and Page Number restart ........................................................ 19 

Bullets & Numbering ..................................................................................................................... 20 

EVENT MONITORING ........................................................................................................................ 21 

ADVANCED TOPICS............................................................................................................................ 21 

overrideTableStyleFontSizeAndJustification ................................................................................. 21 

Document Defaults ....................................................................................................................... 21 

Editing Document Defaults ........................................................................................................... 22 

OLE Helper (for docx, pptx, xlsx) ........................................................................................................... 26 

DOCX, PPTX, XLSX SUPPORT ............................................................................................................. 26 

REQUIREMENTS/DEPENDENCIES ...................................................................................................... 26 

OLE CONCEPTS .................................................................................................................................. 26 

OLE Linking and Embedding in Microsoft Office ........................................................................... 26 

The OpenXML Specification .......................................................................................................... 28 



2 
 

USAGE ............................................................................................................................................... 30 

Overview ....................................................................................................................................... 30 

Linking/embedding in a docx ........................................................................................................ 31 

Linking/embedding in a pptx ........................................................................................................ 33 

Linking/embedding in a xlsx .......................................................................................................... 33 

SAMPLE CODE ................................................................................................................................... 34 

NEW FILE TYPES ................................................................................................................................ 35 

KNOWN ISSUES/LIMITATIONS .......................................................................................................... 35 

Word 2007 .................................................................................................................................... 35 

Powerpoint 2010 x64 .................................................................................................................... 35 

Office 2010 support for ODF ......................................................................................................... 35 

Office 2011 and 2016 for Mac OSX ............................................................................................... 35 

Office Online ................................................................................................................................. 35 

MergePptx ............................................................................................................................................. 36 

INTRODUCTION ................................................................................................................................. 36 

USAGE ............................................................................................................................................... 36 

Concatenating several entire pptx ................................................................................................ 36 

Concatenating parts of several pptx ............................................................................................. 37 

Other SlideRange constructors ..................................................................................................... 37 

Deleting part of a pptx .................................................................................................................. 38 

SETTINGS ........................................................................................................................................... 38 

Sections ......................................................................................................................................... 38 

ThemeTreatment .......................................................................................................................... 38 

EVENT MONITORING ........................................................................................................................ 40 

Appendix 1 - Installation ....................................................................................................................... 42 

Using Maven ................................................................................................................................. 42 

Maven Dependency Notes ............................................................................................................ 42 

Appendix 2 – LOGGING ......................................................................................................................... 43 

Appendix 3 – .NET environment ........................................................................................................... 44 

Introduction .................................................................................................................................. 44 

.NET sample solution .................................................................................................................... 44 

Logging .......................................................................................................................................... 44 

GAC................................................................................................................................................ 45 

ASP.NET notes ............................................................................................................................... 45 

Recreating the DLLs ....................................................................................................................... 46 

 



3 
 

 

  



4 
 

Overview 
This manual describes features of the docx4j Enterprise Edition. 

The Enterprise Edition includes the following features which are not available in the Community 

Edition (ie the docx4j open source project): 

Docx 

MergeDocx 
MergeDocx is for appending/concatenating docx files 
together to create a single docx file 

OLE 

OLE Helper makes it easy to use docx4j to 

programmatically embed or link files (eg PDF or HTML files) 

as OLE objects in a docx, pptx, or xlsx. 

Without this OLE Helper, it can be a real challenge to 

convert your file into a suitably structured OLE object, 

which works across Office 2007, 2010, 2013 and 2016. 

DigSig 

Dig Sig makes it easy to use docx4j to work with digital 

signatures. 

This feature is available in the Enterprise 8.x series, but 

omitted from the initial v11 release awaiting a 

jakarta.xml.bind compatible version of Apache Santuario.  

We expect to re-introduce it in a subsequent release. 

Pptx 

MergePptx 

MergePPtx is a utility for concatenating pptx presentations 

together.  It uses the slide masters and layouts from the 

first presentation, so it "re-brands" subsequent 

presentations to have the same look and feel. 

OLE see above 

DigSig see above 

Xlsx 
OLE see above 

DigSig see above 

 

In the distribution, there is a sub-directory corresponding to each of the above projects.  Additional 

exclusive features will be added over time.  Purchasers of the Enterprise Edition also support 

Plutext’s continued investment in the development and support of the docx4j open source project. 

In each sub-directory, you'll find the run-time jar, a jar containing sample files, and (if applicable) a 

jar containing source code.   

In the samples jar META-INF dir, you'll find a maven pom.xml.  In this, a dependency on the current 

release of docx4j (v11.4.5) is declared; you may use subsequent releases of docx4j 11.4 as they 

become available.   

 



5 
 

Version 11.4 
For the 11.x series of docx4j community and Enterprise, the minimum supported version of Java is 

Java 11.  These are JPMS modularised releases, containing module-info.java files.  You can find 

sample module-info.java files for incorporation into your project in each of the sample zip files. 

docx4j 11.4.5 community edition introduced the following changes: 

• Use jakarta.xml.bind, not the old javax.xml.bind 

In Enterprise Edition v11.4, we have also switched to jakarta.xml.bind.  

If you have an existing project, you will need to switch to docx4j 11.4.5 or later.   

You'll also  need to search/replace  across your code base, replacing javax.xml.bind with 

jakarta.xml.bind  

Distributions 

The Enterprise Edition is available in 3 flavours for 2 platforms: 

Java time limited trial/evaluation 

product – binaries only 

product – with Java source code 

.NET time limited trial/evaluation 

product – binaries, plus 
.NET wrapper code 

product – with Java source code 
(and instructions for creating DLL) 

 

 

Installation 
To use the Enterprise Edition: 

• first make sure you have docx4j 11.4.x running properly in your project, then 

• you simply add the relevant jars to your project (and any dependencies provided in the lib 

dir) depending on whether you want to use MergeDocx, MergePptx, or OLE components .   

The sample jars contain a pom.  To use this, you'll need to install the Enterprise jar to your local 

Maven repo.  See Appendix 1 for more detail. 

The Enterprise Edition DLL is intended for use in a .NET environment.  Instructions for use in a .NET 

environment are contained in appendix 2. 



6 
 

 



7 
 

MergeDocx 

INTRODUCTION 
This chapter explains how to use the MergeDocx functionality, which is capable of 

appending/concatenating docx files together to create a single docx file.  For example, to place a 

cover letter and a contract into a single docx file, without changing the look/feel of either document. 

BASIC USAGE 

Concatenating several entire docx 
 
A BlockRange is essentially a WordprocessingMLPackage, or a range of content in a 

WordprocessingMLPackage, plus config settings. 

To merge docx files, you invoke DocumentBuilder with List<BlockRange>: 
 
 List<BlockRange> blockRanges = new ArrayList<BlockRange>(); 
 blockRanges.add( new BlockRange( wordMLPkg1 ) ); 
 blockRanges.add( new BlockRange( wordMLPkg2 ) ); 
 // etc 
  
 // Perform the actual merge 
 DocumentBuilder documentBuilder = new DocumentBuilder(); 
 WordprocessingMLPackage output = documentBuilder.buildOpenDocument(blockRanges); 

 
You can fine tune the merge process by configuring individual block ranges, or the DocumentBuilder 
object, as described in the SETTINGS section below. 
 
The samples directory contains an example called MergeWholeDocumentsUsingBlockRange which 
you can use as a starting point. 
 
Alternatively, there is a webapp which can generate code for you, based on your chosen 
configuration. 
 
Note: there is also a static method you can use to merge a List<WordprocessingMLPackage>, but that 
is not recommended since it precludes user config of DocumentBuilder and individual BlockRanges.   
 
If you invoke DocumentBuilder with List<BlockRange>, obviously all your BlockRanges are in memory at 

once.   DocumentBuilderIncremental is a more memory efficient approach which avoids this.  See 

MANY DOCUMENTS further below. 

 

Concatenating parts of several docx 
If you wish to use only a certain part of the documents, you need to invoke DocumentBuilder with a 
List<BlockRange>  
 

BlockRange associates a range with a WordprocessingMLPackage.   

The org.docx4j.wml.Body element has a method: 

    public List<Object> getEGBlockLevelElts()  

http://webapp.docx4java.org/OnlineDemo/forms/upload_MergeDocx.xhtml


8 
 

 

which contains the "block-level" document content (paragraphs, tables etc).1 

BlockRange constructors let you say you want the contents starting from the nth element onwards: 

    /** 

     * Specify the source package, from "n" (0-based index) to the end of the document **/ 

    public BlockRange(WordprocessingMLPackage wordmlPkg, int n) 

 

or count elements from the nth element: 

    /** 

     * Specify the source package, from "n" (0-based index) and include "count"  

     * block-level (paragraph, table etc) elements. **/ 

    public BlockRange(WordprocessingMLPackage wordmlPkg, int n, int count) 

 

or the entire docx: 

    /** 

     * Specify the entire source package. **/ 

    public BlockRange(WordprocessingMLPackage wordmlPkg) 

     

 

For example: 

  List<BlockRange> blockRanges = new ArrayList<BlockRange>(); 

  blockRanges.add(new BlockRange(wmlPkgIn));       // add all 

  blockRanges.add(new BlockRange(wmlPkgIn, 0, 6)); // paras 0-5 

  blockRanges.add(new BlockRange(wmlPkgIn, 6));    // paras 6 onwards 

   

  DocumentBuilder documentBuilder = new DocumentBuilder(); 

  WordprocessingMLPackage output = 

     documentBuilder.buildOpenDocument(blockRanges); 

 

The result is a new WordprocessingMLPackage containing the specified portions of the source 

documents. 

The samples directory contains an example called MergeBlockRangeFixedN. 

Where you want to use the nth element constructors, how do you determine n?  See Determining 

the nth element towards the end of this document. 

You may use the one WordprocessingMLPackage in more than one BlockRange.  For example: 

  List<BlockRange> blockRanges = new ArrayList<BlockRange>(); 

  blockRanges.add(new BlockRange(wmlpkg1, 12)); 

  blockRanges.add(new BlockRange(wmlpkg2, 3, 3)); 

  blockRanges.add(new BlockRange(wmlpkg1));  // Use wmlpkg1 again 

 

You must not however, use a BlockRange object twice.  For example, the following is an incorrect 

usage: 

  BlockRange blockRange1 = new BlockRange(wmlpkg1, 12); 

  List<BlockRange> blockRanges = new ArrayList<BlockRange>(); 

  blockRanges.add(blockRange1); 

 
1 Since docx4j 2.7.0, you can also use the ContentAccessor interface (which is supported by various 

objects): 

    public List<Object> getContent()  



9 
 

  blockRanges.add(new BlockRange(wmlpkg2, 3, 3)); 

  blockRanges.add(blockRange1);  // Incorrect 

 

Determining the nth element  

 

As explained above, BlockRange constructors let you say you want the contents starting from the 

nth element onwards: 

    /** 

     * Specify the source package, from "n" (0-based index) to the end of the document **/ 

    public BlockRange(WordprocessingMLPackage wordmlPkg, int n) 

 

or count elements from the nth element: 

    /** 

     * Specify the source package, from "n" (0-based index) and include "count"  

     * block-level (paragraph, table etc) elements. **/ 

    public BlockRange(WordprocessingMLPackage wordmlPkg, int n, int count) 

 

The question arises as to how to work out these numbers. 

There are three approaches for finding the relevant block: 

• manually 

• via XPath 

• via TraversalUtils 

TraversalUtils is the recommended approach.  This is mainly because there is a limitation to using 

XPath in JAXB (as to which see below). 

Explanations of the three approaches follow. 

Common to all of them however, is the question of how to identify what you are looking for.   

• Paragraphs don't have ID's, so you might search for a particular string.   

• Or you might search for the first paragraph following a section break. 

• A good approach is to use content controls (which can have ID's), and to search for your 

content control by ID, title or tag.  

The examples provided show how to do each of these.  They can be readily adapted for other cases, 

such as before or after a table or image.  If you have any difficulties with your particular case, please 

do not hesitate to ask for support. 

Manual approach 

The manual approach is to iterate through the block level elements in the document yourself, 

looking for the paragraph or table or content control which matches your criteria.  To do this, you'd 

use org.docx4j.wml.Body element method: 

    public List<Object> getEGBlockLevelElts()  

 



10 
 

XPath approach 

Underlying this approach is the use of XPath to select JAXB nodes: 

 MainDocumentPart documentPart = wordMLPackage.getMainDocumentPart(); 
 String xpath = "//w:p";   
 List<Object> list = documentPart.getJAXBNodesViaXPath(xpath, false); 

 

You then find the index of the returned node in EGBlockLevelElts. 

Beware, there is a limitation to using XPath in JAXB: the xpath expressions are evaluated against the 

XML document as it was when first opened in docx4j.  You can update the associated XML document 

once only, by passing true into getJAXBNodesViaXPath. Updating it again (with current JAXB 2.1.x or 

2.2.x) will cause an error. So you need to be a bit careful! 

TraversalUtils approach 

TraversalUtil is a general approach for traversing the JAXB object tree in the main document part.  

TraversalUtil has an interface Callback, which you use to specify how you want to traverse the 

nodes, and what you want to do to them. 

TraversalUtil can be used to find a node; you then get the index of the returned node in 
EGBlockLevelElts. 

Examples are in the samples directory, named as follows: 

 Manually via XPath via TraversalUtil 

String 
MergeBlockRangeN 

ViaManualString 
MergeBlockRangeN 

ViaXPathString 

MergeBlockRangeN 

ViaTraversalUtil

s 

String 

SectPr 
MergeBlockRangeN 

ViaManualSectPr 
MergeBlockRangeN 

ViaXPathSectPr 

MergeBlockRangeN 

ViaTraversalUtil

s 

SectPr 

Conten
t 

control 

MergeBlockRangeN 

ViaManualContentContro

l 

MergeBlockRangeN 

ViaXPathContentContro

l 

MergeBlockRangeN 

ViaTraversalUtil

s 

ContentControl 
 

Inserting in a table cell  
 

The approach described above doesn’t allow you to insert contents into a table cell. 

To do this, you can either use the class ProcessAltChunk as described next page below, or you can use 

a placeholder to indicate where you want a BlockRange to be inserted. 

The placeholder is a content control containing a  
 
       <w:tag w:val="MergeDocx:BlockRangeIDREF=myTableContent"/> 
 

in this case referencing a BlockRange having ID “myTableContent”.   
 
Inside a table cell, the complete placeholder would look something like this: 
 
        <w:tc> 



11 
 

          <w:sdt> 
            <w:sdtPr> 
              <w:tag w:val="MergeDocx:BlockRangeIDREF=myTableContent"/> 
            </w:sdtPr> 
            <w:sdtContent> 
              <w:p> 
                <w:r> 
                  <w:t>My placeholder7</w:t> 
                </w:r> 
              </w:p> 
            </w:sdtContent> 
          </w:sdt> 
        </w:tc> 
 
 

The BlockRange which will be placed at this location, is given a matching ID: 
 
 blockrange.setID("myTableContent"); 
 

You may then invoke DocumentBuilder in the usual way.  The result will be that the contents of the 
table cell are replaced with the contents of the block range. 
 
This works in a similar way to the way AltChunk processing works (see next page); in both cases you 

can insert the block range at locations where block/paragraph-level content is allowed.  

For the best practice approach, please see the end of this section.  The interim content works up to 
that by describing alternatives. 
 
The simplest approach is to add your ID’d block ranges to the blockRanges list before the ‘real’ 
documents:  
 
  List<BlockRange> blockRanges = new ArrayList<BlockRange>(); 
  BlockRange block; 
   
  // Define insertions 
  block = new BlockRange(insertionDocx,1,1); 
  block.setID("MySourceId"); 
  blockRanges.add( block ); 
   
  // Now add inputDocx1 proper 
  block = new BlockRange(inputDocx1); 
  blockRanges.add( block ); 
 
  // Perform the actual merge 

The reason for this is that if instead the block range(s) being moved is/are last, then after it is/they 

are moved, the sectPr at the end of the previous block range is left untouched, and is now adjacent 

to the document level sectPr.  (The step of moving things around is the very last step in the 

MergeDocx process). 

The downside of having your ID’d block ranges at the start of the blockRanges list, is that certain 

document wide defaults come from there. 

If you have them at the end of the blockRanges list, you‘ll get two sectPr elements at the end of the 

document (the first belonging to the immediately prior block range, and the document level one an 

artifact from the block range which was moved).  For example: 

        <w:p> 
            <w:pPr> 
                <w:sectPr w:rsidR="00D37ADB"> 
                    <w:pgSz w:h="16838" w:w="11906"/> 
                    <w:pgMar w:gutter="0" w:footer="708" w:header="708" w:left="1440" w:bottom="1440" 
w:right="1440" w:top="1440"/> 



12 
 

                    <w:cols w:space="708"/> 
                    <w:docGrid w:linePitch="360"/> 
                </w:sectPr> 
            </w:pPr> 
        </w:p> 
        <w:sectPr> 
            <w:pgSz w:h="16838" w:w="11906"/> 
            <w:pgMar w:gutter="0" w:footer="708" w:header="708" w:left="1440" w:bottom="1440" 
w:right="1440" w:top="1440"/> 
            <w:cols w:space="708"/> 
            <w:docGrid w:linePitch="360"/> 
        </w:sectPr> 

This is harmless enough, but if you wanted to fix it, you could in your own code programmatically 

delete the document level one, and you could also promote the sectPr from the last paragraph. 

You wouldn’t want to setSectionBreakBefore(SectionBreakBefore.NONE) on the block range not 

being moved, since although you’ll end up with only one sectPr, it is the wrong one!  

Finally, here is the best practise: 

• add your documents 

• followed by the fragments to be moved 

• followed by an empty block range constructed from the last document not being moved 

like so: 

  WordprocessingMLPackage pkg1 = WordprocessingMLPackage.load(new File(file1)); 
  BlockRange source1 = new BlockRange(pkg1); 
  source1.setSectionBreakBefore(SectionBreakBefore.NONE); // note this 
   
  BlockRange tableContent = new BlockRange(WordprocessingMLPackage.load(new 
File(file2))); 
  tableContent.setID("myTableContent");  
   
  List<BlockRange> sources = new ArrayList<BlockRange>(); 
  sources.add(source1); 
  sources.add(tableContent); 
   
  // Add pkg1 again for our body level sectPr  
  BlockRange emptyBR = new BlockRange(pkg1, 0, 0);  // none of the contents - just 
sectPr 
  sources.add(emptyBR); 

Resolving altChunk 
altChunk is a way of telling a consuming application that certain content is to be included in the 

document. 

For further details, please see http://blogs.msdn.com/b/ericwhite/archive/2008/10/27/how-to-use-

altchunk-for-document-assembly.aspx 

Word 2007 understands what to do with an altChunk. 

docx4j doesn't, unless you use the MergeDocx utility (or write or own code).  If your docx contains 

altChunks, it is important to be able to resolve them if you want to generate HTML or PDF output 

using docx4j. 

MergeDocx handles altChunk of type docx, as opposed to html or plain text.  Support for altChunk of 

type xhtml is available in the docx4j-ImportXHTML jar. 

The class ProcessAltChunk is used as follows: 
 
 ProcessAltChunk processor = new ProcessAltChunk(wordMLPackage); 

http://blogs.msdn.com/b/ericwhite/archive/2008/10/27/how-to-use-altchunk-for-document-assembly.aspx
http://blogs.msdn.com/b/ericwhite/archive/2008/10/27/how-to-use-altchunk-for-document-assembly.aspx


13 
 

 wordMLPackage = processor.process(); 
 

In the constructor, you pass the package containing the altChunks you wish to process. 

The process() method returns a new package, in which the altChunks have been converted. 

There are 2 fields you can set to configure behaviour: 

• setStyleHandler; this defaults to StyleHandler.USE_EARLIER, which you'd use if all your chunks use 
the same style definitions.  Otherwise if the style definitions are different, use 
StyleHandler.RENAME_RETAIN 

• setUseContinuousSections; introduced in 8.1.0.3, the intent of this is to be able to honour margin 
settings in an altChunk.  It does this by inserting continuous section breaks before and after the 
altChunk, specfiying appropriate margins.  This capability is not available in Microsoft Word's altChunk 
conversion. 

 

Limitations/recommendations: 

• We recommend you avoid setting headers/footers in your altChunk. 

 

Microsoft Word does strange things when an altChunk contains headers/footers; currently, 

MergeDocx does not attempt to duplicate this behaviour.   

 

• altChunk elements in parts other than the Main Document Part (eg headers/footers, 

footnotes/endnotes and comments) are not converted. 

 

Any comments and footnotes/endnotes in the altChunk should get added OK. 

Deleting part of a docx 
If you want to delete part of a docx, including the parts it references but which will no longer be 

used, you can use the constructor: 

    /** 

     * Specify the source package, from "n" (0-based index) and include "count"  

     * block-level (paragraph, table etc) elements. **/ 

    public BlockRange(WordprocessingMLPackage wordmlPkg, int n, int count) 

 

twice on the one input document, adding the bit before the stuff to be deleted, and the bit after it. 

OpenDoPE 
Background 

The Open XML specification includes a technology called “Custom XML data binding”, which can be 

used in document automation and reporting scenarios to automatically inject data from an XML 

document of your choosing into your docx. 

If a content control has an XPath, that XPath is used to retrieve the matching element from your 

XML document. 

OpenDoPE (Open Document Processing Ecosystem) is a set of conventions for tagging a content 

control to enable: 



14 
 

• conditional content 

• repeating content (eg rows of a table, or a bulleted or numbered list) 

docx4j is the reference implementation of OpenDoPE. 

MergeDocx support for OpenDoPE 

You can use MergeDocx and OpenDoPE together.  Support for combining these technologies was 

significantly improved in MergeDocx v1.5.0 

You can use MergeDocx first, and then docx4j’s OpenDoPEHandler. 

Or you can use docx4j’s OpenDoPEHandler first, then MergeDocx. 

Either order is supported, but it is probably more efficient to use MergeDocx first, followed by 

OpenDoPEHandler.  If you plan use MergeDocx first, and your documents include compound 

conditions (ie and|or|not operators), you must use docx4j 3.0. 

MergeDocx is designed to ensure that each of the input docx uses its own OpenDoPE parts and XML 

answers, without interfering with the other input docx. 

There are two approaches to supplying the XML answer files. 

The first approach is to inject an appropriate answer file into each input docx before invoking 

MergeDocx and OpenDoPEHandler.  This is the approach which would be familiar to OpenDoPE 

users. 

A second approach is to tell MergeDocx a Map of W3C DOM Documents containing answers which 

are to be used across the input documents.  The map is keyed by root element QName.  With this 

approach, you can skip the preliminary step of injecting real XML data into each input docx. 

For example, suppose you were merging 3 documents, of which2 used an answer file with root 

element <supplier> and one used an answer file with root element <specification>. 

With: 

 Map<QName, org.w3c.dom.Document> answerDomDocs 

 

you can set: 

 
 documentBuilder.setOpenDoPEAnswers(answerDomDocs); 

and the values supplied will be used in preference to whatever XML part (with corresponding root 

element QName) is in the input docx.  

There is a helper class OpenDoPeRegistration, which adds an InputStream representation of your XML, 

to the Map<QName, org.w3c.dom.Document>. 

 Map<QName, org.w3c.dom.Document> answerDomDocs = new HashMap<QName, org.w3c.dom.Document>(); 
 InputStream is = FileUtils.openInputStream(new File("supplier.xml")); 
 OpenDoPeRegistration.register(answerDomDocs, is); 
 is = FileUtils.openInputStream(new File("specification.xml")); 
 OpenDoPeRegistration.register(answerDomDocs, is); 
  
 documentBuilder.setOpenDoPEAnswers(answerDomDocs); 



15 
 

OpenDoPE processing of rich text fragments 

OpenDoPE also allows you to bind to an XML node containing: 

• escaped XHTML 

• docx content (stored as escaped Flat OPC XML) (since docx4j 3.0.1) 

In both cases, docx4j will convert that to docx content. 

In the Flat OPC XML case, it converts it to an AltChunk (see previous section).  MergeDocx can then 

convert the AltChunk to native document content. 

MANY DOCUMENTS 
If you invoke DocumentBuilder with List<BlockRange>, obviously all your BlockRanges are in memory at 

once.  

If you are merging many documents, or even a smaller number of large documents, you may run out 

of memory. 

DocumentBuilderIncremental is intended to help in this situation.  It allows you to work with a 

single BlockRange at a time. 

Example of usage: 

        DocumentBuilderIncremental dbi = new DocumentBuilderIncremental(); 
 
        for (int i = 0; i < MAX; i++) { 
 
            BlockRange block = getBlockRange(i);  // Your method 
 
            block.setSectionBreakBefore(BlockRange.SectionBreakBefore.NEXT_PAGE); 
            if (i==0) { 
             block.setHeaderBehaviour(BlockRange.HfBehaviour.DEFAULT); 
             block.setFooterBehaviour(BlockRange.HfBehaviour.DEFAULT); 
            } else { 
             // Avoid creating unnecessary additional header/footer parts 
             block.setHeaderBehaviour(BlockRange.HfBehaviour.INHERIT); 
             block.setFooterBehaviour(BlockRange.HfBehaviour.INHERIT);  
            } 
             
            System.out.println(i); 

            dbi.addBlockRange(block, i==(MAX-1) );  // 2nd param is whether this is your last docx 
        } 
         

        WordprocessingMLPackage output = dbi.finish();// Get the output docx 

In the example above, the headers/footers are taken from the first document only.  This avoids 
creating potentially thousands of header/footer parts, where just a couple suffice. 
 
 

SETTINGS 

Styles 
 By default, if a style is encountered which is already defined in an earlier BlockRange, that earlier 

definition will be used.  If the definition is different, this will cause the appearance of text using this 

style to change.   



16 
 

This default option is USE_EARLIER.  This is similar to the default option in Word when you paste 

content from one document to another (that is, if there is a style defined in the destination which 

has the same name (name, not ID), then the “destination” style is used).  

If the documents you are merging were styled independently, you will probably want them to retain 

their individual look.  This can be accomplished by importing the styles (and renaming them so they 

don't collide). 

To do this, setStyleHandler to RENAME_RETAIN: 

  BlockRange blockRange1 = ... 

  BlockRange blockRange2 = ... 

 

  source2.setStyleHandler(StyleHandler.RENAME_RETAIN); 

 

This is similar to Word’s “source formatting”, the difference being that in Word, the effect is 

achieved by using direct paragraph formatting.  In contrast, MergeDocx defines and imports a style.  

This creates less markup, and makes it easier for someone to edit the merged document (ie to add 

paragraphs using the same style). 

Known limitation regarding Table of Contents: consider a style which will be renamed.  A TOC field 

which refers to that style will not be updated to use the new name.  This means entries in the table 

of contents will go missing. 

If the document contains numbering, you'll also want to : 

 

  source2.setNumberingHandler(NumberingHandler.ADD_NEW_LIST); 

 

Page breaks 
MergeDocx ensures that each document is separated by a section properties element.  The relevant 

properties are actually contained in the first sectPr element in the second of any two BlockRanges.   

In other words, if 3 documents are concatenated, and each is just a single section, the resulting 

document will contain 3 sections. 

By default each section starts on a new page. 

If you want to avoid the page break, use BlockRange's setSectionBreakBefore method: 

  BlockRange blockRange1 = ... 

  BlockRange blockRange2 = ... 

   

  // avoid page break 

  blockRange2.setSectionBreakBefore(SectionBreakBefore.CONTINUOUS);  

   

  etc. 

 

The MergeBlockRangeFixedN sample utilizes this. 

Your choices for the SectionBreakBefore property are: 

• NONE 

• NONE_MERGE_PARAGRAPH 

• NEXT_PAGE 

• NEXT_COLUMN 



17 
 

• CONTINUOUS 

• EVEN_PAGE 

• ODD_PAGE 

With the exception of "NONE" and "NONE_MERGE_PARAGRAPH" these mirror values available in 

Word. 

Since what happens between documents is controlled by the first sectPr in the second of the two 

documents, MergeDocx will set the first sectPr in the second document with the value specified.  If 

there is no sectPr, it will add one at the end of the BlockRange and set that. 

"NONE" is a bit different.  In this case, no sectPr will be added, and nor will any existing sectPr be 

altered.  So you can think of it as "unspecified".   NONE can be useful if you want to manipulate 

sectPr values in your own code. 

"NONE_MERGE_PARAGRAPH" will attempt to merge the last paragraph of the previous block range 

with the first paragraph of this one. 

 

If you leave the propery unset, MergeDocx will add a sectPr if one is not present.  MergeDocx will 

not set its type.  If the type is not set, the default is NEXT PAGE, according to the OpenXML spec.   

Note:  in Word, by default, ODD_PAGE is not honoured if you have set page numbering to restart.  

Please see the section after Page Numbering below for details as to how to control this behaviour. 

Also, Word will ignore a “continuous” setting, and insert a page break, if it detects that the page 

sizes of the two contiguous sections are different.  This can produce unexpected results where, for 

example, both page sizes are intended to be A4 portrait, but specified in units which differ (for 

whatever reason) by a few mm.  The sample NormalizePageSizes contains code which 

demonstrates how to address this issue. 

Controlling Headers and Footers 
Suppose you are merging docx1 and docx2. 

The default behaviour is as follows: 

• If docx1 has a header, and docx2 does as well, then by default both sets of headers will be 

used. 

• If docx1 has a header, but docx2 doesn't, then by default the pages from docx2 will be 

shown using headers from docx1. 

You can override this behaviour: 

• if you want no headers defined in the first section of docx2: 

  blockRange2.setHeaderBehaviour(HfBehaviour.NONE);  

 

• if docx2 has headers defined in its first sectPr, but you want to ignore them and use the 

headers from docx1: 

  blockRange2.setHeaderBehaviour(HfBehaviour.INHERIT);  

 

There is a similar method for controlling footer behaviour, called setfooterBehaviour. 



18 
 

Page Numbering 
Suppose you are merging docx1 and docx2, and showing page numbers or cross referencing to page 

numbers. 

Unless docx2 explicitly restarts page numbering, the numbers will continue on from those in docx1. 

You can make the page numbering restart with: 

  blockRange2.setRestartPageNumbering(true);  

 

If you are using page numbering of the form "page n of <total pages>" and you want <total pages> 

to reflect the number of pages in the relevant original document (rather than the number of pages in 

the resulting merged document), you should change your source documents so that they refer to 

<Total Number of Pages in Section>.  See further http://support.microsoft.com/kb/191029 

This will work provided each source docx has a single section.  If the source documents have multiple 

sections, you will need to put a bookmark on the last page of each, and use a reference to that as 

the total number of pages. 

If you have front matter you wish to exclude from the number of pages, you need to do a 

calculation2: 

• If you know the number of pages in the front matter (and it will not change), then you can 

use Page { Page } of { = { NumPages } - x }, where x is the number of pages in the front 

matter.  For example:  

 (toggle field codes to see) 

• If not, then you insert a bookmark on the last page of the document and use a PageRef field 

to reference the page number of that bookmark instead of the NumPages field. 

 

Macros 
The default behaviour of MergeDocx is to produce an output docx which contains no macros. 

You can configure DocumentBuilder to retain the macros present in one of the source documents.  

To do this, you need to be using the BlockRange approach. 

DocumentBuilder contains: 

       /** 
        * With this setting, you can embed macros from one of the input documents, in the output docx. 
        * Without it, macros will simply be ignored. 
        * The macros come from the docm or dotm underlying the specified BlockRange. 
        * The setting will be ignored if a docx or dotx underlies the specified BlockRange. 
        * @param br 
        */ 
       public void setRetainMacros(BlockRange br)  

 
2 http://www.eggheadcafe.com/microsoft/Word-Page-Layout/35979216/total-page-number-minus-number-
of-pages-in-front-matter.aspx 
http://wordribbon.tips.net/T010604_Field_Reference_to_Number_of_Prior_Pages.html 

http://support.microsoft.com/kb/191029


19 
 

So you can do something like:   

 documentBuilder.setRetainMacros(blockRanges.get(2)); 

 
to keep the macros from docm/dotm underlying the 3rd BlockRange. 

If MergeDocx finds macros in that block range, the resulting output document will be set to be of the 

same type (ie docm or dotm).  It is your responsibility, when saving your output 

WordprocessingMLPackage, to save it with the correct filename extension.  If a docm is saved with a docx 

extension, if you try to open it in Word 2010, you will an error similar to the following: 

 

So you need to ensure you use the correct filename extension. 

Interaction between ODD_PAGE and Page Number restart 
With MergeDocx, you can use the settings described above to have each new document start on the 

right (recto) page, with numbering starting again from one: 

 block.setSectionBreakBefore(SectionBreakBefore.ODD_PAGE); 
 block.setRestartPageNumbering(true); 
 

Microsoft Word will not however, honour this combination, unless the docx is “tweaked” to make it 

do so. 

There are two different ways MergeDocx can tweak the output docx in order to have Word behave 

as expected.  You’ll need to experiment with both approaches; this is best done by physically 

printing the output from Word to your printer or to PDF.  (You can print 4 pages per side to save 

paper, and still see what is going on.) 

The first is:                 

documentBuilder.setSectionBreak_ODD_PAGE( 

                        BEHAVIOUR_SectionBreak_ODD_PAGE.MIRROR_MARGINS); 

This is the cleanest approach, and should be used where possible.  For it to work, you need to ensure 

your first docx being merged has a document settings part (since the mirror margins setting is stored 

in that part, and MergeDocx gets that part from the first docx). 

The second is:                 

documentBuilder.setSectionBreak_ODD_PAGE( 

                        BEHAVIOUR_SectionBreak_ODD_PAGE.FIELD_IF_MOD); 

If you use this approach, MergeDocx will insert an arcane field into your docx before appropriate 

sections (hit Shift F9 to see field codes): 



20 
 

 

The table below summarises the advantages and disadvantages of each approach: 

MIRROR_MARGINS + doesn’t introduce fields into the 
docx 

- may not work if documents contain both portrait 
and landscape pages; see 
http://support.microsoft.com/kb/185528 
- first docx must have a document settings part for 
this to work (you can add one with docx4j if it 
doesn’t)  
- single setting per docx (though the other approach 
is the same in practice) 

FIELD_IF_MOD 

+ suited to a mixture of portrait and 
landscape pages 
+ could in principle control each docx 
separately (contact Plutext if you need 
this) 
+ can be adjusted to include “this page 
intentionally left blank” 

- PDF output systems (other than Word) are less 
likely to support 

 

Bullets & Numbering 
When documents using the "same" numbering are merged, by default, the numbering will continue, 

not restart. 

This is useful if you are merging chapters of a book, or sections of a contract, and you want the 

numbering to continue. 

Sometimes however, you may want to force the numbering to restart.  To do this, you instruct 

MergeDocx to add new lists, rather than re-using existing lists. 

To do this, NumberingHandler to ADD_NEW_LIST: 

  BlockRange blockRange1 = ... 

  BlockRange blockRange2 = ... 

 

  source2.setNumberingHandler(NumberingHandler.ADD_NEW_LIST); 

 

The default is USE_EARLIER_IFF_SAME.  "same" means the formatting definition is the same (ie 

they look the same), and the list is based on the same abstract numbering definition identifier (nsid). 

There is a third option, USE_EARLIER, which will use a list with the same nsid from an earlier 

BlockRange, irrespective of whether it looks the same.  The numbering will continue, not restart.  For 

example if the numbering of the list in the first BlockRange was decimal, and the second BlockRange 

contained a list with the same nsid but roman numbering, applying the USE_EARLIER to the 

second BlockRange would cause its numbering to be decimal (rather than roman). 

http://support.microsoft.com/kb/185528


21 
 

EVENT MONITORING 
Since merging documents can take some time (depending on the number and complexity of the 

documents), the possibility exists (new in 3.1.0) of performing the merge in the background, and 

receiving notification when the job is complete. 

See the MergeDocxProgress sample for an example of usage. 

As per that example, you need to: 

• create a message bus, and tell Docx4jEvent to use it 

• define and register/suscribe a listener 

This is done as follows: 

 // Creation of message bus 
 MBassador<Docx4jEvent> bus = new MBassador<Docx4jEvent>( 
   BusConfiguration.Default()); 
 //  and registration of listeners 
 ListeningBean listener = new ListeningBean(); 
 bus.subscribe(listener);  
 // tell Docx4jEvent to use your message bus for notifications 
 Docx4jEvent.setEventNotifier(bus); 

 

The sample class contains an example ListeningBean.  Note the @Handler annotation. 

Docx4j’s approach to event monitoring relies on the MBassador library; see further 

https://github.com/bennidi/mbassador 

For another example of monitoring events (docx load, save), please see 

https://github.com/plutext/docx4j/blob/master/src/samples/docx4j/org/docx4j/samples/EventMon

itoringDemo.java 

ADVANCED TOPICS 
The following topics document several features of the file format for interested readers.   However, 

no special action should be necessary (beyond setting StyleHandler as appropriate) since MergeDocx 

should handle these quirks. 

overrideTableStyleFontSizeAndJustification 
In a document created in Word, the settings part, by default contains: 

    <w:compatSetting w:name="overrideTableStyleFontSizeAndJustification" .. w:val="1"/> 
 

but this may vary by input document. 

Where it is false, then anything in a table where font size 11/12 or jc left came from the Normal style 

was ignored (in favour of whatever the table style specified). 

In the output docx, this is always set, so paragraph styles do override table styles. 

Where that wasn’t true in a particular input document, appropriate adjustments are made. 

Document Defaults 
The styles part of a docx contains an element called w:docDefaults.  Example contents: 

https://github.com/bennidi/mbassador
https://github.com/plutext/docx4j/blob/master/src/samples/docx4j/org/docx4j/samples/EventMonitoringDemo.java
https://github.com/plutext/docx4j/blob/master/src/samples/docx4j/org/docx4j/samples/EventMonitoringDemo.java


22 
 

  <w:docDefaults> 
    <w:rPrDefault> 
      <w:rPr> 
        <w:rFonts w:asciiTheme="minorHAnsi" w:eastAsiaTheme="minorEastAsia" 
w:hAnsiTheme="minorHAnsi" w:cstheme="minorBidi"/> 
        <w:sz w:val="22"/> 
        <w:szCs w:val="22"/> 
        <w:lang w:val="en-US" w:eastAsia="ko-KR" w:bidi="ar-SA"/> 
      </w:rPr> 
    </w:rPrDefault> 
    <w:pPrDefault> 
      <w:pPr> 
        <w:spacing w:after="200" w:line="276" w:lineRule="auto"/> 
      </w:pPr> 
    </w:pPrDefault> 
  </w:docDefaults> 

 

These are the basic/root settings, on which the formatting/appearance is based.  See further below 

for tips on seeing/manipulating w:docDefaults 

When documents are merged, there can only be one w:docDefaults element. 

If one or more blockrange have StyleHandler.RENAME_RETAIN (that is, you want to retain the 

existing look of each individual document), or incremental processing is being used, we merge the 

properties in doc defaults into the styles. 

 

Editing Document Defaults 
Microsoft Word provides ways to edit your document defaults, but no easy way to be sure what the 

settings are (since the Word interface conflates the default paragraph style (eg Normal) and 

DocDefaults/pPrDefault!). 

To see the actual settings, we recommend looking at the raw XML.  There are a few different ways to 

do this: 

In Java 

            // Given WordprocessingMLPackage  
            org.docx4j.wml.Styles styles = 
(org.docx4j.wml.Styles)wmlPkg.getMainDocumentPart().getStyleDefinitionsPart().getJaxbElement()
; 
            System.out.println(  
              org.docx4j.XmlUtils.marshaltoString(styles.getDocDefaults())); 
 

or just: 

            System.out.println(  
              wmlPkg.getMainDocumentPart().getStyleDefinitionsPart().getXML() ); 
 

They’ll be at the top. 

or  use the Docx4j Helper Word Addin (v3.3)  

 



23 
 

Clicking that, you’ll see your w:docDefaults in an editor window: 

 

If you edit the XML then click the apply button, the result will be a new docx containing your 

new settings. 

or, unzip the docx, then open styles.xml 

 

or use the webapp, to navigate to the styles part 

 

or, if you have Visual Studio, 

use the Open XML Package Editor for Visual Studio:  

https://visualstudiogallery.msdn.microsoft.com/450a00e3-5a7d-4776-be2c-8aa8cec2a75b 

With that you can drag your docx onto Visual Studio, then navigate the tree to the styles 

part. 

You can edit and save your changes. 

 

With some of the above approaches, you can edit your w:docDefaults. 

Alternatively, you can do this in Word: 

• To set paragraph level doc default properties, right click then choose “Paragraph” from the 

context menu.   

 

https://visualstudiogallery.msdn.microsoft.com/450a00e3-5a7d-4776-be2c-8aa8cec2a75b


24 
 

You should see: 

 

The key is the "set as default" button. 

• To set run level doc default properties, right click then choose “Font” from the context 

menu.   

 



25 
 

Again, when you have things set as you wish, click the "set as default" button. 

 



26 
 

OLE Helper (for docx, pptx, xlsx) 

This chapter explains how to use the docx4j OLE Helper tool 

OLE Helper makes it easy to use docx4j to programmatically embed or link files as OLE objects in a 

docx, pptx, or xlsx. 

File types which can be embedded/linked with this tool include: 

• PDF 

• Zip files 

• Text files (plain text, CSV, XML etc) 

• HTML and MHT files 

• Open Document Format (LibreOffice/OpenOffice) files 

• Binary Office documents (eg doc/ppt/vsd/xls files) 

• Microsoft Project files 

• Outlook message files 

• Video files (.MOV, .WMV) 

Without this OLE Helper, it can be a real challenge to convert your file into a suitably structured OLE 

object, which works across Office 2007, 2010 and 2013. 

DOCX, PPTX, XLSX SUPPORT 
You can use the OLE helper functionality to embed files in any of: 

• docx 

• pptx 

• vsdx (Visio) 

• xlsx 

REQUIREMENTS/DEPENDENCIES 
OLE Helper requires JPedal (to create an image from the first page of a PDF).  This may be found in 

the lib dir. 

OLE CONCEPTS 

OLE Linking and Embedding in Microsoft Office 
A file can be linked from or embedded in an Office document (docx, pptx, xlsx). 

Such a file will be represented by an icon or image on the document surface. 

The user can right click on the object and “activate contents”:- 



27 
 

 

If the user has the necessary application installed, the file will then be opened in that application. 

Double clicking is equivalent to selecting “Activate Contents”. 

If the object is embedded, it is the object physically embedded in the Office document which is 

copied to a temp location and then opened. 

If the object is linked, the object is opened from the location specified in the link.  Obviously it needs 

to be available at that location for this to work. 

If, after activation, you see the image change size, this is because Office 2010 automatically resizes 

the image if its specified size differs from its intrinsic size. 

A document author can embed or link a document in this way, via the user interface of Word, 

Powerpoint or Excel (Insert > Object). 

In Word, when you do this, you see the following dialog: 

 



28 
 

Excel and Powerpoint are similar.  There are certain entries in the list which are always there, 

because Office knows what to do with them natively.   

Others only appear there if you have suitable software installed.  “Adobe Acrobat Document” is an 

example of this:- it only appears if you have at least Acrobat Reader installed. 

Docx4j-OLE Helper allows you to programmatically link/embed objects, without any need for such 

things to be installed.  The user opening the document will however need the relevant application 

should they wish to activate the object. 

The OpenXML Specification 
The Open XML specification states that the embedded object is represented by an “Embedded 

Object” part.  The equivalent docx4j object is 

org.docx4j.openpackaging.parts.WordprocessingML.OleObjectBinaryPart.  This object is used for 

docx, pptx and xlsx. 

The spec says that for a docx, you can embed an object in the folowing parts: 

• Main Document  

• Comments  

• Footnotes, Endnotes  

• Header, Footer  

For an XLSX, it can go in a Worksheet part. 

In a pptx, it can go in: 

• Slide  

• Slide Layout  

• Slide Master  

• Handout Master  

• Notes Slide  

• Notes Master  

Different XML is used, depending on whether it is being embedded in a docx, pptx, or xlsx. 

Included below is sample XML for each of these contexts. 

Docx 
      <w:r> 
        <w:object> 
          <v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75"  

o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe"  
filled="f" stroked="f"> 

            <v:stroke joinstyle="miter"/> 
            <v:formulas> 
              <v:f eqn="if lineDrawn pixelLineWidth 0"/> 
              <v:f eqn="sum @0 1 0"/> 
              <v:f eqn="sum 0 0 @1"/> 
              <v:f eqn="prod @2 1 2"/> 
              <v:f eqn="prod @3 21600 pixelWidth"/> 
              <v:f eqn="prod @3 21600 pixelHeight"/> 
              <v:f eqn="sum @0 0 1"/> 
              <v:f eqn="prod @6 1 2"/> 
              <v:f eqn="prod @7 21600 pixelWidth"/> 



29 
 

              <v:f eqn="sum @8 21600 0"/> 
              <v:f eqn="prod @7 21600 pixelHeight"/> 
              <v:f eqn="sum @10 21600 0"/> 
            </v:formulas> 
            <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/> 
            <o:lock v:ext="edit" aspectratio="t"/> 
          </v:shapetype> 
          <v:shape id="_x0000_i1025" type="#_x0000_t75" o:ole=""> 
            <v:imagedata r:id="rId5" o:title=""/> 
          </v:shape> 
          <o:OLEObject Type="Embed" ProgID="AcroExch.Document.7"  

ShapeID="_x0000_i1025" DrawAspect="Icon"  
ObjectID="_1430550695" r:id="rId6"/> 

        </w:object> 
      </w:r> 

Pptx 
<a:graphic> 
  <a:graphicData uri="http://schemas.openxmlformats.org/presentationml/2006/ole"> 
        <p:oleObj name="Acrobat Document" r:id="rId3"  

imgW="5667119" imgH="8019810"  
progId="AcroExch.Document.11"> 

          <p:embed/> 
          <p:pic> 
            <p:nvPicPr> 
              <p:cNvPr id="0" name=""/> 
              <p:cNvPicPr/> 
              <p:nvPr/> 
            </p:nvPicPr> 
            <p:blipFill> 
              <a:blip r:embed="rId4"/> 
              <a:stretch> 
                <a:fillRect/> 
              </a:stretch> 
            </p:blipFill> 
            <p:spPr> 
              <a:xfrm> 
                <a:off x="4181475" y="719138"/> 
                <a:ext cx="3829050" cy="5418137"/> 
              </a:xfrm> 
              <a:prstGeom prst="rect"> 
                <a:avLst/> 
              </a:prstGeom> 
            </p:spPr> 
          </p:pic> 
        </p:oleObj> 
 
  </a:graphicData> 
</a:graphic> 

Xlsx 
  <legacyDrawing r:id="rId1"/> 
  <oleObjects> 
    <oleObject r:id="rId2" shapeId="1025" progId="AcroExch.Document.11" /> 
  </oleObjects> 

 

Each of the above has in common: 

• A relID pointing to the Embedded Object part 

• A relID pointing to an image 

• A progID 



30 
 

For pptx, you also specify the location and size of the image 

The docx4j-OLE Helper helps you to create the above structures, but its main contribution is to put 

your file in the correct format  

USAGE 

Overview 
A high level API is provided, which allows you to: 

• Link, or 

• Embed 

in a docx, pptx, or xlsx: 

• a PDF, or 

• an ODF (Open Document Format file, as used in LibreOffice/OpenOffice) 

• other object. 

PDF and ODF handling/behaviour is a bit different. 

In each case, an image is required.   Office default behaviour is to use a file icon, except in the case 

of PDF, where the first page is shown.  The API gives you similar options: 

• allow it to generate and use a file icon (for PDF the methods have suffix UsingIcon), 

• provide a specific image you wish to use (which goes beyond what the Office user interface 

offers) (for PDF the methods have suffix UsingImage), or 

• (in the case of PDF only) generate the image from the first page of the object 

The API is contained in the following helper classes:   

 OLE object 

 PDF ODF Other 

Docx PdfOleHelperDocx OdfOleHelperDocx OleHelperDocx 

Pptx PdfOleHelperPptx OdfOleHelperPptx OleHelperPptx 

Xlsx PdfOleHelperXlsx OdfOleHelperXlsx OleHelperXlsx 

 

Note the following parameters: 

Caption (Label) A text string which may appear on the surface of the 
document.  Typically, the file name. 

File path Typically, the complete path of the original file location 

Command For embed, this is typically the complete path of the file 
(including file name).  Only the file extension matters, 
since that may be used to determine what program 
opens the object (determined on the client computer 
by its Control Panel\Programs\Default Programs\Set 
Associations).  The dir path is typically replaced by the 
actual location of the user’s temp dir. 
For link, use the complete path of the original file 
location 



31 
 

 

For objects other than a PDF, you need to specify the embedding type.  enum EmbeddingType includes: 
  
 DOC, 
 PPT, 
 VSD, 
 XLS, 
 DOCX, 
 PPTX, 
 VSDX, 
 XLSX, 
  
 MPP, 
  
 MMAP(mindmap), 
  
 // One Note 
 ONE, ONE_PKG(Notebook), 
 
 MSG, 
 PDF, 
  
 HTML, 

MHT,  
 
 TXT, 
 CSV, 
 XML, 
  
 ZIP, 
 
 MOV, 
 WAV, 
 WMV, 
 
 ODP, 
 ODS, 
 ODT, 

 

Linking/embedding in a docx 
To link/embed in a docx, use OleHelperDocx (or PdfOleHelperDocx if you are embedding a PDF). 

The OleHelperDocx API returns a run (w:r) object containing the OLE object, suitable for embedding 

in a paragraph (w:p) anywhere in the main document part.   

If you are inserting a PDF: 

• The plain embed/link methods in PdfOleHelperDocx will generate an image from the PDF 

• You can use the methods with suffix UsingIcon to generate a file icon image, with the 

caption/label you provide 

• You can use the methods with suffix UsingImage to supply some arbitrary image of your 

own.   Since you have to supply a PDF in the embedding case (as opposed to linking), that 

PDF can be used to generate an image if you supply null. 

 

If you are inserting some other type of object: 

• If you don’t supply an image, a file icon image will be generated, with the caption/label you 

provide 

 

 



32 
 

EmbeddingType Sample name Notes 

PDF Docx_ole_PDF_icon.java Embed using generated 
icon 

PDF Docx_ole_PDF.java Embed creating image 
from first page of PDF 

DOC, PPT, XLS 
VSD 

Docx_ole_Doc.java 
Docx_ole_vsd.java 

Demo using custom image 

DOCX, PPTX, XLSX 
VSDX 

Docx_ole_Xlsx.java 
Docx_ole_vsdx.java 

 

MPP Docx_ole_MicrosoftProject.java  

MMAP Docx_ole_MindMap.java  

MSG Docx_ole_OutlookMsg.java  

ONE 
ONE_PKG 

Docx_ole_OneNote.java 
Docx_ole_OneNotePkg.java 

 

ODF Docx_ole_ODF.java  

HTML Docx_ole_HTML.java  

MHT Docx_ole_MHT_WebArchive.java  

CSV Docx_ole_csv.java Demo using custom image 

TXT Docx_ole_txt.java  

ZIP Docx_ole_zip.java  

WAV Docx_ole_wav.java  

MOV, WMV Docx_ole_wmv.java  

Package Docx_ole_Binary.java For arbitrary file type 

   

 

Some of the signatures include a style parameter, which you can use to specify image size (eg 

"width:446pt;height:630pt").  You don’t really need to worry about this, unless you supply your own 

image. 

If you do supply your own image, the following considerations apply.  Word 2010 will initially display 

the image using the style you specify.  However, after the user activates the OLE object, the image 

will be resized to its intrinsic size (if that is different).   

So if you want to avoid Word resizing the image: 

• you can supply a style paramater which specifies the correct size, or 

• you can allow docx4j to work it out (supply a null style) 

Best practise is to alter the intrinsic size of your image (resizing with your preferred library) 

before invoking PdfOleHelperDocx.  

Docx4j can automatically work out what style to use, by examining the image.  But that will 

cause a temp file to be created.   

To avoid that, you need to specify that size via the style parameter, and the mime type. For 

example, a 96 pixels per inch image (ThumbnailViaJPedal creates an image 595px height by 

841px wide at 96 pixels/inch) can be converted to points by multiplying by 72/96. 

If you don’t care whether the image is resized, you can: 



33 
 

• leave the style null, in which case unless docx4j works out a style for you, Word displays by 

default at 0.7" x 0.7", or 

• you can supply a custom size, which Word will use 

Rule of thumb if you supply your own image is to:  supply style and mime type which are both null, 

or both non-null. Image introspection will occur if mime type is null. 

Linking/embedding in a pptx 
To link/embed in a pptx, use OleHelperPptx (or PdfOleHelperPptx if you are embedding a PDF, or 

OdfOleHelperPptx if you are embedding an ODF). 

You’ll have to provide the coordinates at which the image is to be inserted, by passing the top, left 

position (each an int, in points).  

When using OleHelperPptx, a  caption of the form “aaa (file.txt)” should be avoided, since upon 

activation, Powerpoint (2010 and 2013 at least), convert the caption to the form “caption 

(caption.txt)”. 

When embedding a PDF, you can choose to show the first page of the PDF, or to use an icon.   

An ODF, can on activation, be edited in-place. 

Other file types will typically show as an icon after activation. 

Linking/embedding in a xlsx 
To link/embed in xlsx, use OleHelperXlsx (or PdfOleHelperXlsx if you are embedding a PDF). 

Excel 2010 will scale the image to match anchorLocation. 

You have to provide an array of integers, specifying the anchor location for the object.  This 

corresponds to the VML anchor element.  The values are: LeftColumn, LeftOffset, TopRow, 

TopOffset, RightColumn, RightOffset, BottomRow, BottomOffset. 

Value Description 

LeftColumn The left anchor column of the object (left-most column is 0). [Example: 
An object whose left anchor was off of the third column would have a 
LeftColumn value of 2. end example] 

LeftOffset The offset of the object's left edge from the left edge of the left anchor 
column. This value is measured in pixels. 

TopRow The top anchor row of the object (top-most column is 0). [Example: An 
object whose top anchor was off of the fifth row would have a TopRow 
value of 4. end example] 

TopOffset The offset of the object's top edge from the top edge of the top anchor 
row. This value is measured in pixels. 

RightColumn The right anchor column of the object (left-most column is 0). 
[Example: An object whose right anchor was off of the tenth column 
would have a RightColumn value of 9. end example] 

RightOffset The offset of the object's right edge from the left edge of the right 
anchor column. This value is measured in pixels. 

http://webapp.docx4java.org/OnlineDemo/ecma376/VML/Anchor.html


34 
 

Value Description 

BottomRow The bottom anchor row of the object (top-most column is 0). 
[Example: An object whose bottom anchor was off of the tenth row 
would have a BottomRow value of 9. end example] 

BottomOffset The offset of the object's bottom edge from the bottom edge of the 
bottom anchor row. This value is measured in pixels. 

 

[Example: The left side of the object is 15 pixels to the right of the left edge of the second column.  

The top edge is 2 pixels below the upper edge of the first row.  The right side is 15 pixels to the right 

of the left edge of the fourth column.  The bottom edge is 16 pixels below the top of the fourth row. 

int[] anchorLocation = {1, 15, 0, 2, 3, 15, 3, 16} 

When using a file type icon, this looks best if it is around 3 rows high (at standard row height).  The 

width (number of columns) depends on the length of the caption string.  The following code snippet 

accommodates that: 

 int cols = (int)Math.max(1, Math.round( caption.length()/5)); // accommodate long caption 
 int leftCol=4; 
 int rightCol=leftCol+cols; 
 int topRow=4; 
 int bottomRow=topRow+3;  // fixed at 3 rows high, good for a file icon 
  
 int[] anchorLocation = {leftCol, 0, topRow, 0, rightCol, 0, bottomRow, 0};  

SAMPLE CODE 
Sample code is included to demonstrate various cases. 

Note that the only difference between linking and embedding, is whether the content is included.  

Because of this, each sample can be readily used for either linking or embedding. 

EmbeddingTyp
e 

docx pptx xlsx 

PDF Docx_ole_PDF_icon.java Pptx_ole_PDF_icon.java Xlsx_ole_PDF_icon.java 

PDF Docx_ole_PDF.java Pptx_ole_PDF.java Xlsx_ole_PDF.java 

DOC, PPT, XLS 
VSD 

Docx_ole_Doc.java 
Docx_ole_vsd.java 

  

DOCX, PPTX, 
XLSX 

VSDX 

Docx_ole_Xlsx.java 
Docx_ole_vsdx.java 

Pptx_ole_Xlsx.java 
Pptx_ole_vsdx.java 

Xlsx_ole_docx.java 

MPP Docx_ole_MicrosoftProject.j
ava 

  

MMAP Docx_ole_MindMap.java   

MSG Docx_ole_OutlookMsg.java   

ONE 
ONE_PKG 

Docx_ole_OneNote.java 
Docx_ole_OneNotePkg.java 

  

ODF Docx_ole_ODF.java Pptx_ole_ODF.java Xlsx_ole_ODF.java 

HTML Docx_ole_HTML.java   

MHT Docx_ole_MHT_WebArchive.
java 

  

CSV Docx_ole_csv.java   

TXT Docx_ole_txt.java Pptx_ole_txt.java Xlsx_ole_txt.java 



35 
 

ZIP Docx_ole_zip.java   

WAV Docx_ole_wav.java   

MOV, WMV Docx_ole_wmv.java Pptx_ole_wmv.java Xlsx_ole_wmv.java 

Package Docx_ole_Binary.java Docx_ole_Binary.java Docx_ole_Binary.java 

    

 

NEW FILE TYPES 
Supporting a new file type is essentially a matter of creating a .cfb template file for it. 

If you’d like a new file type to be supported, please email a sample docx in which you have 

embedded (using Word) a file of that type, to support@plutext.com 

KNOWN ISSUES/LIMITATIONS 

Word 2007 
Icons shrink after activation. 

Powerpoint 2010 x64 
Activating a PDF which is shown as an icon should work.  However,if the first page of the PDF is 

displayed, after activation, it may be replaced in the slide with a blank image. 

Office 2010 support for ODF 
Office 2010 only supports ODF 1.1 (Office 2013 can read ODF 1.2 files). 

Bear in mind that recent versions of OpenOffice and LibreOffice (eg OpenOffice 4.0.14 and 

LibreOffice 4.1.4) create ODF 1.2 files.  Before embedding an ODF file, you are advised to manually 

open it in Office 2010 to verify that that works. 

Office 2011 and 2016 for Mac OSX 
Support for OLE activation in Office on OSX is severely limited.  It only knows how to open Office 

document types (docx/pptx/xlsx, and binary doc/ppt/xls), and can’t readily activate PDF, text etc. 

Office Online 
In Word Online, you won't see an OLE object (these are silently dropped by Word Online).  (Tested 

with an embedded PDF in December 2019).  Expect similar behaviour in Powerpoint and Excel 

Online. 

 



36 
 

MergePptx 

INTRODUCTION 
MergePPtx is a utility for concatenating pptx presentations together. 

It can be used to "re-brand" presentations to have the same look and feel (“theme”) as the first one. 

Alternatively (since v3.2.0.3), you can keep each presentation’s existing theme. 

In principle, it could be used to remove slides from a presentation, but there are more efficient ways 

of doing that. 

USAGE 
A SlideRange represents the slides in a source pptx to be merged. 

The simplest constructor says to use the entire presentation (ie all the slides): 

    public SlideRange(PresentationMLPackage pmlPkg) throws MergePptxException 

 

Other constructors are discussed below. 

Concatenating several entire pptx 
To do this: 
 

• construct a PresentationBuilder object 

• create a SlideRange for each pptx, and add it, with 
 
builder.addSlideRange(sr); 
 

• get the resulting PresentationMLPackage using 
 
builder.getResult(); 

 
The result is a new PresentationMLPackage containing the contents of the source decks. 

For example: 

  String[] deck = {"deck1.pptx" , "deck2.pptx"}; 
 

  PresentationBuilder builder = new PresentationBuilder(); 
   
  for (int i=0 ; i< deck.length; i++) { 
    
   
   // Create a SlideRange representing the slides in this pptx 
   SlideRange sr = new SlideRange( 
     (PresentationMLPackage)OpcPackage.load( 
       new File(DIR_IN + deck[i]))); 
   sr.setName(i+ " " + deck[i]);  // PkgIdentifier for ListeningBean 
    
   // Add the slide range to the output 
   builder.addSlideRange(sr); 
  } 
 
  PresentationMLPackage  result = builder.getResult(); 



37 
 

 

If you want to use a particular pptx morethan once, you should use clones for each of the 

subsequent times. 

The samples directory contains an example called MergeWholePresentations. 

Note: versions earlier than v3.2.0 suggested: 

 List<PresentationMLPackage> pmlPkgs = … 

 PresentationMLPackage result = PresentationBuilder.merge(pmlPkgs); 
 

however, that requires each input pptx to be in memory at the same time. 

Accordingly, that approach is now deprecated. 

 

Concatenating parts of several pptx 
If you wish to use only a certain slides, you use the SlideRange constructor: 
 
    /** 
     * @param pmlPkg 
     * @param slideNumber 0-based 
     * @throws MergePptxException  
     */ 
    public SlideRange(PresentationMLPackage pmlPkg,  
    int[] slideNumber) throws MergePptxException 

 

For example: 

  PresentationBuilder builder = new PresentationBuilder(); 
   
  int[] range1 = {2,4,6,8}; 
  builder.addSlideRange( new SlideRange( 
       
 (PresentationMLPackage)OpcPackage.load(new File(DIR_IN + "microsoft1.pptx")), 
        range1) ); 
   
  int[] range2 = {1,3,5}; 
  builder.addSlideRange( new SlideRange( 
       
 (PresentationMLPackage)OpcPackage.load(new File(DIR_IN + "oracle.pptx")), 
        range2) ); 
   
 PresentationMLPackage  result = builder.getResult(); 

 

If you want to use a particular pptx in morethan one SlideRange, you should use clones for each of 

the subsequent times. 

The result is a new PresentationMLPackage containing the contents of the source decks. 

The samples directory contains an example called MergeListedSlides. 

 

Other SlideRange constructors 
 

    /** 



38 
 

     * Specify the source package, from "start" (0-based index) to the end of the document 
     * @param wordmlPkg 
     * @param start 
     * @throws MergePptxException  
     */ 
    public SlideRange(PresentationMLPackage pmlPkg, int start) throws MergePptxException 

 

    /** 
     * Specify the source package, from "start" (0-based index) and include "count"  
     * slides 
     *  
     * @param wordmlPkg 
     * @param start 
     * @param count 
     * @throws MergePptxException  
     */ 
    public SlideRange(PresentationMLPackage pmlPkg, int start, int count) throws 
MergePptxException 

 

Deleting part of a pptx 
The easiest way to delete slides is to use: 

    public SlideRange(PresentationMLPackage pmlPkg, int[] slideNumber) 
 

putting all the slides you want to keep in the array. 

SETTINGS 

Sections 
PowerPoint 2010 introduced the concept of a "section".   

In Docx4j Enterprise v8.1.0, when merging presentations, you can preserve existing sections.  To do 

this, set property: 

com.plutext.merge.pptx.SectionAware=true 

If that is set to false, sections will not be defined in the merged pptx. 

In earlier versions of Docx4j Enterprise, there was no specific section handling. 

ThemeTreatment 
(since v3.2.0.3) 

In a pptx, each slide has a slide layout part. 

Each slide layout: 

• has a name 

• uses a slide master. 

And each slide master is linked to a theme.   

• A theme has a name, but a slide master doesn’t. 



39 
 

• Generally, there is a 1:1 relationship between theme and slide master. 

So we have this sort of structure: 

 

(Note: a slide layout can also specify a themeOverride.) 

In PowerPoint, you can see this if you click View > Slide Master.  For example: 

 

At the top of the hierarchy is the theme/slidemaster.  

The name of the theme is given by the mouseover.   

Under each theme/slidemaster, are the associated slide layouts.   

You can mouseover these to see which slides uses a given 

layout. 

 

Theme:Master1 Layout1
Slide 1

Slide 2

Layout2

Theme:Master2



40 
 

By default, MergePptx will use the theme(s) defined in the first presentation.  So a slide in a 

subsequent presentation which uses layout “Title and Content” defined in the first presentation, will 

take on that appearance. 

If a slide uses a layout name not previously encountered (likely a custom layout name), that layout 

will be added, and associated with an existing theme. 

You can use ThemeTreatment.RESPECT to have the theme names act as a namespace:  

  PresentationBuilder builder = new PresentationBuilder(); 
  builder.setThemeTreatment(ThemeTreatment.RESPECT); 

 

In this case, a slide in a subsequent presentation which uses layout “Title and Content” defined in 

the first presentation, will only take on the appearance of the earlier presentation if they use a 

theme with the same name.  Otherwise, the theme/master and layout will be imported. 

The screenshot above is an example of the Slide Master view for a presentation generated using 

ThemeTreatment.RESPECT. 

Note that only the name of the theme matters.   

New in v8.4.0.0, there is ThemeTreatment.RENAME which is like existing value RESPECT, except the 

Theme names in each deck are made unique.  This is useful where the themes have same name (but 

different content),  so user doesn't need to worry about ensuring the names are unique. 

If you want to see how your input is being processed, set logger: 

    <logger name="com.plutext.merge.pptx.ThemeTreatment"> 
    <level value="info"/>  
 </logger> 

(and set other loggers to warn or error).  This will produce output like: 

ThemeTreatment .appendSlideRange line 515 - /ppt/slides/p3_slide1.xml 
ThemeTreatment .handleLayout line 582 - Uses layout OPN_02_2003:Blank 
ThemeTreatment .handleLayout line 588 - .. which we need to add  
ThemeTreatment .importLayout line 698 - Importing master /ppt/slideMasters/slideMaster1.xml 
ThemeTreatment .appendSlideRange line 515 - /ppt/slides/p3_slide2.xml 
ThemeTreatment .handleLayout line 582 - Uses layout OPN_02_2003:Title Slide 
ThemeTreatment .handleLayout line 588 - .. which we need to add  
ThemeTreatment .appendSlideRange line 515 - /ppt/slides/p3_slide3.xml 
ThemeTreatment .handleLayout line 582 - Uses layout OPN_02_2003:Title and Content 
ThemeTreatment .handleLayout line 588 - .. which we need to add  
ThemeTreatment .appendSlideRange line 515 - /ppt/slides/p3_slide4.xml 
ThemeTreatment .handleLayout line 582 - Uses layout OPN_02_2003:Title and Content 
ThemeTreatment .handleLayout line 591 - .. which is already present  (in /ppt/slideLayouts/slideLayout211.xml 

EVENT MONITORING 
Since merging presentations can take some time (depending on the number and complexity of the 

presentations), the possibility exists of performing the merge in the background, and receiving 

notification when the job is complete. 

The MergeWholePresentations sample contains an example of usage. 

As per that example, you need to: 

• create a message bus, and tell Docx4jEvent to use it 



41 
 

• define and register/suscribe a listener 

This is done as follows: 

 // Creation of message bus 
 MBassador<Docx4jEvent> bus = new MBassador<Docx4jEvent>( 
   BusConfiguration.Default()); 
 // tell Docx4jEvent to use your message bus for notifications 
 Docx4jEvent.setEventNotifier(bus); 
 
 // Define and register/subscribe a listener 
 ListeningBean listener = new ListeningBean(); 
 bus.subscribe(listener);  

 

The samples package contains an example ListeningBean.  Note the @Handler annotation. 

Docx4j’s approach to event monitoring relies on the MBassador library; see further 

https://github.com/bennidi/mbassador 

For another example of monitoring events (docx load, save), please see 

https://github.com/plutext/docx4j/blob/master/src/samples/docx4j/org/docx4j/samples/EventMon

itoringDemo.java 

 

  

https://github.com/bennidi/mbassador
https://github.com/plutext/docx4j/blob/master/src/samples/docx4j/org/docx4j/samples/EventMonitoringDemo.java
https://github.com/plutext/docx4j/blob/master/src/samples/docx4j/org/docx4j/samples/EventMonitoringDemo.java


42 
 

Appendix 1 - Installation 

To use the Enterprise Edition, you simply add the Enterprise Edition jar to your project.   

You’ll need JAXB.  See docx4j’s Getting Started document for more details. 

Using Maven 
If your project is Maven based, you could mvn install docx4j-Enterprise-MergeDocx-11.4.0.1.jar in 

your local maven repository.  From a command line, something like: 

mvn install:install-file  -Dfile=docx4j-Enterprise-MergeDocx-11.4.0.1.jar \ 

                          -DgroupId=com.plutext \ 

                          -DartifactId= docx4j-Enterprise-MergeDocx \ 

                          -Dversion=11.4.0 \ 

                          -Dpackaging=jar  

 

Once you have the jar in your local maven repository, you can add it as a dependency in the pom.xml 

in your project.   

<dependency> 

 <groupId>com.plutext</groupId> 
 <artifactId>docx4j-Enterprise-MergeDocx</artifactId> 
 <version>11.4.0</version>  

</dependency> 

 

You will also need one of the docx4j JAXB jars; see the sample code pom for an example. 

 

The pattern shown above can also be followed for MergePptx and OLE. 

Maven Dependency Notes 

For TextImageGen we suggest you install it to your local mvn repository, using the copy provided in the 
lib dir. 

For reference, its pom is at https://github.com/jcraane/textimagegenerator/blob/master/pom.xml 
and its repository  is as documented there.  

 

https://github.com/jcraane/textimagegenerator/blob/master/pom.xml


43 
 

Appendix 2 – LOGGING 

Like docx4j (from version 3.0), the Enterprise Edition uses slf4j for logging. 

As the slf4j website says: 

The Simple Logging Facade for Java (SLF4J) serves as a simple facade or abstraction for 
various logging frameworks (e.g. java.util.logging, logback, log4j) allowing the end user to 
plug in the desired logging framework at deployment time. 

Please see the slf4j website for further information. 

 



44 
 

Appendix 3 – .NET environment 

Introduction 
Docx4j OLE can be used in a .NET environment.  For this purpose, it is provided as a set of DLLs which 

can be referenced from a Visual Studio project. 

The DLLs were created from the Java jars, using IKVM. 

.NET sample solution 
Docx4j-OLE for .NET is shipped with a sample solution you can unzip and start working with (for 

example, in Visual Studio 2010). 

The solution structure is as follows: 

 

Docx_ole_PDF.cs consists of a few simple steps: 
 
    // Load the docx 
    Console.WriteLine("loading docx"); 
    WordprocessingMLPackage wordMLPackage =  
        Plutext.Docx4NET.WordprocessingMLPackageFactory.createWordprocessingMLPackage( 
                DIR_IN + "simple.docx"); 
 
    // Create a byte[] out of the PDF we wish to embed 
    byte[] pdfBytes = File.ReadAllBytes(DIR_IN + "sample.pdf"); 
 
    // Helper does the work 
    PdfOleHelper pdfOleHelper = new PdfOleHelper(wordMLPackage); 
    pdfOleHelper.embed(pdfBytes); 
 
    // Save the result 
    Plutext.SaveFromJavaUtils.save(wordMLPackage, DIR_OUT + @"\OUT_ole.docx"); 

 

After you've built the solution in Visual Studio, be sure to "Start without Debugging".  (If you instead 

choose Debugging, it is orders of magnitude slower) 

In the console window, you should see something like: 

loading docx 

reading pdf 

.. read 272919 

embedding pdf 

saving docx 

done; wrote to C:\Users\jharrop\AppData\Local\Temp\ 

Press any key to continue . . .  

 

Open that docx and verify you have an embedded PDF.  You can then modify the sample project to 

suit your purposes. 

You'll notice there is a startup time to load the DLLs (and the JAXB Context - essentially, reading all 

the classes which represent the Open XML spec), so you'll want your process to stay resident so you 

only incur the startup time penalty once.  

Logging 
You can and should configure logging of docx4j related events in your application, via: 



45 
 

      Plutext.Log4jConfigurator.Configure( 
            org.apache.log4j.Level.INFO,  
            DIR_OUT + @"\docx4j-OLE_NET_log.txt",  
            true); 
 

Please inspect the logs to verify there are no errors. 

GAC 
The DLLs have strong names, so you can install them in GAC: 

>gacutil /i docx4j.dll 

Microsoft (R) .NET Global Assembly Cache Utility.  Version 4.0.30319.17929 

Copyright (c) Microsoft Corporation.  All rights reserved. 

 

Assembly successfully added to the cache 

 

 

>gacutil /i docx4j-OLE.dll 

Microsoft (R) .NET Global Assembly Cache Utility.  Version 4.0.30319.17929 

Copyright (c) Microsoft Corporation.  All rights reserved. 

 

Assembly successfully added to the cache 

 

To check version etc information, use the /l argument: 

 
 

>gacutil /l docx4j 

 

Microsoft (R) .NET Global Assembly Cache Utility.  Version 4.0.30319.17929 

Copyright (c) Microsoft Corporation.  All rights reserved. 

 

The Global Assembly Cache contains the following assemblies: 

  docx4j, Version=2.9.9.8, Culture=neutral, PublicKeyToken=caeb68ac682d6c33, 

processorArchitecture=MSIL 

 

Number of items = 1 

 

>gacutil /l docx4j-OLE 

 

Microsoft (R) .NET Global Assembly Cache Utility.  Version 4.0.30319.17929 

Copyright (c) Microsoft Corporation.  All rights reserved. 

 

The Global Assembly Cache contains the following assemblies: 

  docx4j-OLE, Version=1.0.2.8, Culture=neutral, PublicKeyToken=caeb68ac682d6c33, 

processorArchitecture=MSIL 

 

Number of items = 1 

 

 

ASP.NET notes 
There are certain classloading differences between Java and .NET which must be accomodated, 

particularly in an ASP.NET environment.   



46 
 

The one you need to accommodate in your code is loading of Xalan, symptom for which is 

org.apache.xalan.processor.TransformerFactoryImpl not found. 

To solve this add to your .NET code: 

 
        java.lang.Class clazz = typeof(org.apache.xalan.processor.TransformerFactoryImpl); 
        java.lang.Thread.currentThread().setContextClassLoader(clazz.getClassLoader()); 
 

or better: 

 
        ikvm.runtime.Startup.addBootClassPathAssembly( 
            System.Reflection.Assembly.GetAssembly( 
                typeof(org.apache.xalan.processor.TransformerFactoryImpl))); 
 

The latter is better because it is a global setting you only need to do once (at the start of your 

application). In comparison, Thread.setContextClassLoader() is a per thread thing, so it depends on 

random ASP.NET threading behavior, and, for a given thread, whether any of the Java classes set it. 

For more details: 

• IKVM Weblog - Class Loading Architecture 

• IKVM Wiki - Class Loader 

Recreating the DLLs 
If you have made changes to the Java source code for docx4j OLE Helper (or one of its dependencies, 

such as docx4j), and you wish to use these changes in .NET, you’ll need to regenerate the DLLs. 

Steps: 

1. IKVM: Download IKVM 8.1.5717.0 and install it. 

2. docx4j DLL: Locate your docx4j DLL (which contains docx4j and all its dependencies); it is 

included in the docx4j OLE .NET distribution. 

If you wish to create the docx4j DLL, then from a dir containing docx4j and all its 

dependencies (and with ikvmc on your path): 

    > ikvmc -out:docx4j-XX.dll -target:library *.jar    

or, just run docxj’s dist.NET ant task (after first setting the ikvm.dir property in build.xml) 

Some warnings are expected.  The resulting DLL should be approx 24MB. 

3. docx4j-OLE DLL: In the docx4j-OLE distribution, run the dist.NET ant task (after first setting 

the ikvm.dir property in build.xml, and the docx4j.dll property to point to DLL from step 2 

above). 

The resulting DLL will be 7-8MB in size. 

4. Test the resulting DLLs in the .NET sample project, by replacing the references to the existing 

DLLs, with references to your new ones, then running the sample. 

Troubleshooting.  If Visual Studio says it can’t load your DLL, look for Fusion Log Viewer (x64) for 

example at the following location "C:\Program Files (x86)\Microsoft 

SDKs\Windows\v7.0A\Bin\NETFX 4.0 Tools\x64\FUSLOGVW.exe", run it as administrator, click on 

settings, and enable it, for example to “log in exception text”.  See further, 

http://stackoverflow.com/questions/255669/how-to-enable-assembly-bind-failure-logging-fusion-in-net 

 

http://weblog.ikvm.net/PermaLink.aspx?guid=4e0b7f7c-6f5d-42a3-a4d6-5d05a99c84ff
http://sourceforge.net/apps/mediawiki/ikvm/index.php?title=ClassLoader
http://stackoverflow.com/questions/255669/how-to-enable-assembly-bind-failure-logging-fusion-in-net

